Tag Archives: learning

Project Pentagon

Pentagons are taking over my life.

You may have heard the announcement this summer that mathematicians found a new tiling pentagon. Previously, there were 14 known classes of convex pentagons that tile the plane. Now there are 15. Maybe that’s all there is; maybe there is another class, or even infinitely many classes, remaining. No one knows.

My Normandale colleague Kevin Lee brought some samples of this new pentagon to Math On-A-Stick this summer, mere days after the announcement. This led to discussing the nature of sameness of the pentagons with my father, which led to further reading, and so on…

I am now drawing an example of each of pentagon type using Geometer’s Sketchpad and Adobe Illustrator, cutting them out of wood on a laser cutter, and then figuring out how they go together. No phase of this project is simple.

I consider a pentagon “solved” if I have at least once figured out how it tiles.

I have successfully drawn and cut pentagons 1 through 11. I have solved all of these but number 9.

The project is making me think a lot about learning.

For example, tonight I was working on pentagon number 8. I solved it.

2015-12-16 21.19.40

These sets of four can continue to go together in a way I see and can describe.

But that’s not the only way to view the solution. Maybe someone else solves it using sets of three.

2015-12-16 21.20.15

This is the exact same arrangement—the same solution—organized differently. The threes are meaningful here, whereas the fours were meaningful in the first solution. Which is better? Which is right?

Another solution uses sixes.

2015-12-16 21.21.30

With that set of six pentagons, you can tessellate by translation only. The three pentagons at lower right are the beginning of the next set of six. Each of these has the same orientation as its corresponding pentagon above it. Does that make it a better solution?

I’m thinking a lot these days about the kinds of questions I’ve posed here. I’m trying to sort out my answers to a larger question:

What is (or should be) the relationship between informal outside-of-school math, and school math?

I have given a couple versions of a talk that asks four basic questions about people’s mathematical activity that occurs outside of school:

  • Is this math?
  • Is it school math?
  • Do we value it?
  • Why or why not?

I invite you to join me on this journey.

I’ll keep you posted on the pentagon project.

Kindergarten questions

I am spending a bit of time a couple days a week in kindergarten this year. It was part of the now-changed sabbatical plan, but important to me to follow through on.

Today was my first day. It was awesome.

The young ones are working on patterning. AB patterns, AAB patterns, ABB patterns and ABC patterns. I’ll leave the curricular questions for when I know more. Today I’ll take these activities at face value, which is to say: this is the mathematics these children were working on today.

The children were instructed to use square tiles to make an ABC pattern. If you haven’t spent time studying curricular approaches to patterning in early elementary, this means that they were to use the tiles to make something such as this:

Screen Shot 2015-09-17 at 7.12.35 PM

Color is the only variable attribute of the tiles the children were using.

I had several interesting conversations about this task with children today. The one I want to report is the following.

I made this pattern:

Screen Shot 2015-09-17 at 7.17.32 PM

I asked the girl sitting next to me whether I had made an ABC pattern.

Girl: Yes.

Me: How do you know?

Girl: [blank look; long pause]

Me: Show me how you know it’s an ABC pattern.

She carefully points to each tile, saying one letter per tile in the following way.

Screen Shot 2015-09-17 at 7.20.53 PM

She pauses.

Girl: And you need another C.

Learning is messy—beautifully messy.

I left today with two big questions on my mind; each relating to this exchange, and to others not documented here.

  1. What would these children have done if asked—prior to instruction—to make a pattern with their tiles?
  2. How does this kind of patterning work interact with learning to count?

I hope my readers will see that these are not questions I expect to be answered in the comments. I hope you will see that these are big and important questions worthy of wondering about for days, weeks, and beyond. I hope you’ll join me in wondering about these questions, and the consequences of potential answers to them.

I argued a while back that learning is having new questions to ask. I hope you’ll join me on my learning journey.

The Fundamental Theorem of Calculus

I have taught Griffin (9 years old) the Fundamental Theorem of Calculus.

That is…

\frac{d}{dx} \int_{a}^{x} f(t)dt=f(x)

Details and discussion coming soon.

In the meantime, see Kristin’s related post.

Full disclosure. Griffin was paid a sum of $0.25 for his performance.

Reflections on teaching

I am working on a ton of interesting projects right now. Not least of these is my classroom teaching at the community college. My fingertips are sore from typing.

And yet there is always more to say. More to think about. More conversations to have. Here is a peek into one that is ongoing.

Malke Rosenfeld and I have been going back and forth about math, dance, Papert and learning for a few months now. I am learning a lot from the conversation. She asked some questions this morning.

Malke: A thought just entered my head — why are you offering TDI? Is it based on a question you are unsure of and want to see what others think? Or are you seeing a deficit in math teachers’ thinking that you want to shore up?

Me: When ranting on Twitter, I could see that some of my assumptions about baseline teacher knowledge about fraction/decimal relationships as they pertain to developing children’s thinking were unfounded. That is, I was assuming teachers knew a lot more than they seemed to. Which has implications for my Khan Academy critiques, and lots of other writing on my blog. Yet people were also curious. So I wanted to say more in a way that would draw from and build on a larger collective knowledge, so it’s not just my spouting off.

Malke: Is there a reason you offered it specifically as a course, and not a moderated discussion (which it sort of seems like right now)?

Me: When you view learning as a social process, you tend to think of courses AS moderated discussions. I mean this quite seriously. I know that it goes against the grain of online (and face-to-face) course design. But that’s not because I think of online instruction differently from others; it’s because I have a particular view of learning that runs much deeper than that. If I tell and quiz, you’re not learning very much. If I propose a set of ideas, listen to what you have to say, encourage you to interact with others and move the conversation in directions that seem useful based on those interactions, you’re probably going to learn a lot.

As long as I can keep you engaged in that process. Which is a different challenge online than in the classroom.

Malke: Is there a place you specifically want your students to get to by the end of the seven weeks?  Or are you just curious to see what develops?

Me:  I am curious to learn what I can about teaching at every opportunity. I want to produce “students” who can articulate important questions (see? learning as having new questions to ask?) about curricular approaches to decimals. Ideally, I would help them to develop a critical voice that speaks to/through them when they work with individual students, when they plan lessons and when they talk with their colleagues in a variety of settings. In short, I want to change the way teachers view the territory of decimals, fractions and children’s minds. Strange mix of lofty and specific there, huh?

Questions as evidence of learning

I have argued that learning is having new questions to ask.

Here are a few questions that have surfaced in the early weeks of the semester. These are all student questions in College Algebra.

(1) Can it still be a variable if it only has one value? 

This was asked by a student as we were sorting out whether y=2 counts as a function, and whether it counts as a one-to-one function.

(2) How do you solve x=|y| for y?

This was asked by a student as were considering the relationships among functionsinverses and inverse functions.

(3) Is the inverse of a circle an inside-out circle?

See, we were using a set of equations, considering x as the domain and y as the range. We were asking whether each equation—so viewed—is a function and whether it is one-to-one.

Then we were switching domain and range (i.e. swapping x and y) and asking the same questions about this new equation. Bonus question was to solve each of the new equations for y.

One of our equations was x^{2}+y^{2}=1. Swap x and y and get back the same thing. Thus, a circle (as a relation) is its own inverse. Which fact I had never considered.

But my purpose here is to check in on the progress I am making in fostering and noticing student questions as evidence of learning.

What did you learn?

One thing Malke Rosenfeld and I agreed on over breakfast the other day is that the question, What did you learn? makes us uncomfortable. Weird, right? We are teachers and find both answering and asking this question makes us uncomfortable.

I have many reasons for not liking the question: that it implies the process has ended; that when I ask it of my students, they may be inclined to say what they think I want to hear; that it doesn’t invite further questions; on and on.

Being asked this question in Malke’s (fabulous) workshop* led me to something new, though.

New to me, anyway.

This coming school year, I will characterize learning—for myself and for students—in the following way.

Learning is having new questions to ask.

If I have learned something, it is because I can ask questions that I previously could not. Some examples…

example 1: Algebra II

Reading Nicholson Baker’s article on Algebra II in Harper’s [behind pay wall; also available at your local library. And seriously, a Harper’s subscription is like $15 a year.] recently, I didn’t learn anything. Much of what he had to say about the course and the way students experience it is pretty familiar and the tone resonated with many of my feelings. But when I read Jose Vilson’s response to it, I had questions. Jose writes,

If someone said, “Let’s end compulsory higher-order math tomorrow,” and the fallout happens across racial, gender, class lines, then I could be convinced that this was a step towards reform.

I wondered whether I would view Algebra II differently if I were a man (or woman) of color. I wondered yet again about the place and effect of developmental math and College Algebra on the economically and culturally diverse population of my community college. I have new questions to ask, so I learned something from my colleague Mr. Vilson that I didn’t learn from Mr. Baker.

And you are reading Jose Vilson’s blog on a regular basis, right? If not, now would be a good time to start.

Example 2: Percussive Dance

At Malke’s workshop this week, I began asking about:

  • the relationship between variable and attribute,
  • the importance of decomposing things by their attributes and paying attention to one of these attributes at a time, and whether that is a fundamental characteristic of mathematical activity,
  • whether a characteristic of a novice is an inability to distinguish noise from pattern,
  • how children’s experiences with sameness in their non-mathematical lives informs and constrains their ability to work with sameness in mathematics,
  • whether I was taking seriously my responsibility and opportunity to use physical classroom space for student learning, and
  • what kinds of equivalence relations we could use in Malke’s percussive dance work, and whether we can form a group from the resulting elements, together with composition (my hunch is yes and that the resulting group is non-Abelian, but I haven’t worked out the details).

Now you should watch Malke in action. I’ll be surprised if this 3-minute video doesn’t give you some new questions to ask.

Conclusion

See, in math classes asking questions is usually a sign that you have not learned.

“Any questions?” is a signal to students to speak up if they don’t get what has just been explained.

We have it all backwards.

It shouldn’t be, “What questions do you have?” [I hope you have none so that I can tell myself you learned something.] 

It should be, “What new questions can you ask?” [I hope you have some because otherwise our work is having no effect on your mind.] 

*Asked by someone who is not Malke, for the record.

And vice versa