# Tag Archives: ccss

## A quick plug for Estimation 180

Estimation is more than rounding.

Most of the time we don’t teach this, but it is.

Tabitha (8 years old) had a homework assignment the other night that asked her to imagine she had $100 to spend in a catalog, and to make a list of things she would like to buy from that catalog. She found the latest American Girl catalog and got to work. There was a table to fill out with three columns. 1. Description of item 2. Actual cost of item 3. Estimate A couple minutes later she asks, What’s the estimate if it costs five dollars? Should I write$5.01?

She has discerned that estimate means write down a number that is not the exact value.

But that’s not what estimation is about at all. Estimation is about finding a number that makes sense, and not worrying about whether it’s the exact value or not.

The image below seems to be going nuts on the Internet today (despite my exhortations to the contrary! Oh, Internet! When will you learn to listen to me?)

“Is this reasonable?” is a great estimation question. Rounding is one way to answer the question. But if a kid can quickly find a number that makes sense and it happens to be a precise number, then we probably haven’t asked a good estimation question. Rather than mark it wrong because the kid didn’t round, we should ask this kid a more challenging question next time.

What does a good estimation question look like? What would be more challenging?

Estimation 180. Thinking of a number that makes sense is much more interesting when you have to bring your knowledge of the world to bear.

Is 75 inches a reasonable answer for the difference between the father’s height and the son’s? Is 75 centimeters reasonable?

## Replying to an email [#ccss]

My 5 Reasons Not to Share post has gained new life in the last week. It is evidently being shared widely on Facebook.

One consequence of this is that I am getting daily emails from people who read the piece and feel moved to comment. I do believe the Internet ought to facilitate dialogue. So I have been replying to these emails.

Sometimes, people leave a wrong email address in the contact form and they bounce back. So, in a show of good faith, I share with you a recent email and my reply. Perhaps Gavin will come back to the blog and read my reply. Perhaps he will not.

Anyway, here goes.

Gavin writes:

I do not know if you failed to do your research, but the number line is clearly part of Common Core, for instance:

“CCSS.Math.Content.6.NS.C.6
Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.”

I am not sure how to comment on the article because you have banned commenting on them. I do not have a twitter and therefore cannot join the disucssion there. I hope that you’re not intentionally trying to cast a positive light on Common Core but are instead trying to give an unbiased account of it.

Thank you for taking the time to read, and to write.

I just want to clarify that my claim was not that number lines do not appear in the Common Core. They do appear there, as you point out with your citation. You are completely correct.

But if I remember correctly, the worksheet in question was a second grade worksheet. My claim was this: “There is nothing in the Common Core State Standards that requires students to use number lines to perform multi-digit subtraction.”

I stand by that claim. Even the number line standard you cite in sixth grade doesn’t reference the number line as a way to understand multi-digit subtraction. Instead the spirit of that standard is to use the number line as a way to represent negative numbers (such as -9 or -1/2), and then to understand the coordinate plane. Simply put, if students are going to graph functions in algebra, they will need to work with number lines in earlier grades.

As for the comments thing…I was saddened to have to turn them off for that 5 reasons post. But I am committed to maintaining a reasoned and productive tone on this blog. The comments (both pro- and con- on the Common Core) were spiraling out of control and I simply did not have the time to manage them. It seems clear to me that people are able to comment on the piece as it gets shared on Facebook, but I don’t have access to the comments on other people’s shares so I cannot speak to their quality, and I am not responsible for them in the way I am when they are on my blog.

Finally, you can search my blog for “Common Core” and find that I have made some rather pointed critiques of some specific standards in the Common Core—including engaging and arguing with Bill McCallum (a Common Core author) on matters involving rates, ratios and unit rates. All on the record, and you would be welcome to join the conversation in comments on those posts. I have no interest in promoting CCSS. I do have an interest in making sure that critiques are honest and fair.

Best wishes and thanks again for writing.

Christopher

## The latest “Common Core” worksheet

You have seen this on Facebook.

Ugh what a mess.

Please share the annotated version widely.

I’ll say what I have to say (comments closed) and move on. If you wish to discuss further, hit me up on Twitter or pingback to the blog. Want to talk in private? Click the About/Contact link up top.

Also, Justin Aion—middle school teacher extraordinaire—wrote up his views on the matter. You can read them over in his house.

Here goes…

Dear Jack,

You only subtracted 306 from 427, not 316. You need to subtract another 10 to get the correct answer of 111.

Sincerely,

## The purpose of this task

I cannot say whether this was the right task for this child at this time because I do not know the child, the teacher or the classroom.

I can say the following:

• Analyzing errors is a useful way to encourage metacognition, which means thinking about your thinking. This is an important part of training our minds.
• The number line here is a representation of a certain kind of thinking—counting back. The number line is not the algorithm. The number line records Jack’s thinking. He counted back from 427 by hundreds. Then he counted back by ones. He skipped the tens. We can see this error because he recorded his thinking with a number line.
• Coincidentally, the calculation in question requires no regrouping (borrowing) in the standard algorithm, so the problem appears deceptively simple in its simplified version.
• This task is intended to help students connect the steps of the standard (simplified) algorithm with reasoning that is based on the values of the numbers involved. Why count back by three big jumps? Because you are subtracting 300-something. Why count back by six small jumps? Because you are subtracting something-something-6. Wait! What happened to the 1 in the tens place? Oops. Jack forgot it. That’s his mistake.

So what?

The Common Core State Standards do require students to use number lines more than is common practice in many present elementary curricula. When well executed, these number lines provide support for kids to express their mental math strategies.

No one is advocating that children need to draw a number line to compute multi-digit subtraction problems that they can quickly execute in other ways.

But the “Frustrated Parent” who signed that letter, and the many people with whom that letter resonated, seem not to understand that they themselves think the way Jack is trying to in this task.

Here is the test of that.

What is 1001 minus 2?

You had better not be getting out paper and pencil for this. As an adult “with extensive study in differential equations,” you had better be able to do it as quickly as my 9-year old.

He knows with certainty that 1001 minus 2 is 999. But he does not know how to get the algorithm to make that happen.

If I have to choose one of those two—(1) Know the correct answer with certainty based on the values of the numbers involved, and (2) Get the correct answer using a particular algorithm, but needing paper and pencil to solve this and similar problems—I choose (1) every time.

But we don’t have to choose. We need to work on both.

That’s not Common Core.

That’s common sense.

## Ginger ale (also abbreviated list of Standards for Mathematical Practice)

We have some of these mini cans of ginger ale in the house this week. I am not sure where they came from; only that my wife bought them. Normally we only have sparkling water around, not pop (nor soda, nor…)

So I’m looking at the can instead of grading like I should be and I notice the “25% fewer calories than regular ginger ales” claim.

And I think what any skeptical consumer ought to think. Sure fewer calories in the mini can. Duh.

Then I see this:

They have controlled for the size of the can. Nice. This one has 60 calories per 7.5 fl. oz. Regular ginger ales have 90 calories per 7.5 fl. oz.

I am briefly satisfied. And impressed.

But wait! 60 is 25% less than 90? ARGH!

Two possible explanations:

1. 25% means at least 25%, and Seagram’s chose this nice simple number over the more complicated $33\frac{1}{3}%$.
2. It really is exactly 25%. But we know that calorie counts are rounded to the nearest 10 calories.

This second explanation leads to a sort of lovely task. How can we characterize the set of possible calorie counts for 7.5 fl. oz. of Seagram’s and of regular ginger ale so that, (a) the counts round to 60 and 90, and (b) one number is exactly 25% less than the other?

Extra credit: Which standards for mathematical practice are you using as you solve?

Double extra credit: Which of my abbreviated list of standards for mathematical practice (see below) are you using as you solve? And which was I using as I gazed at my can of ginger ale?

Prof. Triangleman’s Abbreviated List of Standards for Mathematical Practice.

PTALSMP 2: Play. See what happens if you carry out the computation you have in mind, even if you are not sure it’s the right one. See what happens if you do it the other way around. Try to think like someone else would think. Tweak and see what happens.

PLALSMP 3: Argue. Say why you think you are right. Say why you might be wrong. Try to understand how someone else sees things, and say why you think their perspective may be valid. Do not accept what others say is so, but listen carefully to it so that you can decide whether it is.

## Decimals and curriculum (Common Core) [TDI 6]

The Decimal Institute is winding down. This week, I have a short post outlining the relationship between our discussion these past weeks and the Common Core State Standards (with links). Then next week we will wrap up with a summary of what I have learned and an invitation to participants to share their own learning.

The Common Core State Standards build decimals from the intersection of fraction and place value knowledge. Fractions are studied at third grade and fourth grade before decimals are introduced in fourth:

Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.

One of the issues we have been wrestling with in the Institute has been how much decimals are like whole numbers and how much they are like fractions. In light of this conversation, I found the following statements about comparisons interesting.

• CCSS.Math.Content.1.NBT.B.3 Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.
• CCSS.Math.Content.2.NBT.A.4 Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.
• CCSS.Math.Content.4.NBT.A.2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

These all refer to comparisons of whole numbers—at grades 1, 2 and 4. Comparisons of decimals appear at grades 4 and 5. For example:

• CCSS.Math.Content.4.NF.C.7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. [emphasis added]

The phrase, Recognize that comparisons are valid only when the two decimals refer to the same whole, struck me as odd. If I am comparing 0.21 to 0.5, I need to make the whole clear, but if I compare 21 to 5, I do not?

This seems to be an overcommitment to decimals being like fractions rather than like whole numbers. Or not enough of a commitment to the ambiguity of whole numbers.

In any case, the treatment of decimals in the Common Core State Standards is probably one of the major challenges for U.S. elementary teachers, who may be accustomed to curriculum materials that emphasize the place value similarities of decimals to whole numbers rather than the partitioning similarities to fractions.

I will provide some examples of pre-Common Core U.S. curriculum in the Canvas discussion to support this claim. Join us over there, won’t you?

Non-U.S. teachers, please share with us your observations about how these standards relate to curricular progressions you are using. An international perspective will be quite useful to all of us.

And please start thinking about what you can do in the coming weeks to share/demonstrate/document/extend your learning from our time together. Consider it your tuition to the Institute.

## What is “the standard algorithm”? [#algorithmchat]

Richard Skemp wrote, in “Relational Understanding and Instrumental Understanding,” about faux amis—those pesky words in other languages that look like words you are familiar with, but which mean something else entirely. Skemp argues that the word understand is like this—different people use it to mean completely different things. This leads to misunderstanding

And so I fear it is with the standard algorithm.

I have heard it said that the use of this phrase (repeatedly) in the Common Core State Standards was a compromise (although I cannot find a source for this—leave any breadcrumbs you can find in the comments, won’t you?) It would satisfy some parties who believe that the standard algorithm is an essential seawall against the encroaching fuzzy math tide, while leaving the precise nature of the standard algorithm unspecified would appease those who argue that alternative algorithms are helpful in developing and maintaining children’s number sense.

But if a compromise owes its precise nature to the fact that different parties will interpret the terms of the compromise differently, has there really been a compromise? Have we really made an agreement when we disagree about its meaning?

### What is an algorithm?

Karen Fuson and Sybilla Beckmann, in their “Standard Algorithms in the Common Core State Standards” cite a CCSSM Progression document.

In mathematics, an algorithm is defined by its steps, and not by the way those steps are recorded in writing.

Hyman Bass, in his article from Teaching Children Mathematics, “Computational Fluency, Algorithms, and Mathematical Proficiency: One Mathematician’s Perspective” agrees.

An algorithm consists of a precisely specified sequence of steps that will lead to a complete solution for a certain class of computational problems.

So far, so good. We have accord on the meaning of algorithm.

### What is the standard algorithm?

The definite article in the phrase the standard algorithm seems to be important to the alleged compromise I referred to.

Here, for example, is Hung-Hsi Wu on standard algorithms.

[T]he essence of all four standard algorithms is the reduction of any whole number computation to the computation of single-digit numbers.

Wu states the following steps for the standard algorithm (.pdf) for multidigit multiplication.

To compute say 826 × 73, take the digits of the second factor 73 individually, compute the two products with single digit multiplier— i.e., 826 × 3 and 826 × 7 — and, when adding them, shift the one involving the tens digit (i.e., 7) one digit to the left.

He explicitly allows for moving left-to-right, as well as inclusion of zeroes instead of shifting. But explicit attention to place value in the process of working the algorithm seems to be proscribed.

Contrast this with the following figure (click for full-size version) from Fuson and Beckmann.

This figure is labeled “Written methods for the standard multiplication algorithm , 2-digit x 2-digit”. Note in particular methods D (lower left) and F (upper right). Method D shows that we are thinking 6 x 9 tens as we work the algorithm. Method F suggests that we are thinking 6 x 90 as we work.

But wait. The lattice method is an example of the standard algorithm?

Recall that an algorithm is defined by its steps. In Wu’s standard algorithm, you may proceed from left to right, or from right to left; either is acceptable. The lattice has both left/right and up/down steps, and you may do the single digit multiplication steps in absolutely any order.

I cannot imagine that Wu would count the lattice as a standard algorithm, and I seriously doubt he would count partial products (method D) in that category.

All of this got me thinking about whether there are any non-standard algorithms for multi-digit multiplication in the viewpoint that Fuson and Beckmann present. Pretty much every multiplication algorithm I know is in that Fuson and Beckmann figure. Every one except the Russian Peasant Algorithm, that is.

### an alternative

I have argued that the compromise of using the standard algorithm but not specifying the standard algorithm in the Common Core is problematic because different people mean different things by it. The lattice is explicitly counted in the standard algorithm by Fuson and Beckmann, but our agreement on what constitutes an algorithm (a precisely defined series of steps) implies that the lattice constitutes a different algorithm from (say) partial products. Both cannot be the standard algorithm.

But here is an alternative. What if Common Core, instead of using the language of the standard algorithm used the following construction: an algorithm based on place-value decomposition.

In this case, 5.NBT.B.5 would read:

Fluently multiply multi-digit whole numbers using an algorithm based on place-value decomposition.

This construction would seem to include all of the algorithms in Fuson and Beckmann’s figure; it would make clear that the Russian Peasant Algorithm does not count; and it would be more transparent than the standard algorithm.

Until and unless I receive cease-and-desist notifications, I will go ahead and use this version in everything I do.

For your convenience, I have rephrased the various citations below. You can thank me later.

4.NBT.B.4 Fluently add and subtract multi-digit whole numbers using an algorithm based on place-value decomposition.

5.NBT.B.5 Fluently multiply multi-digit whole numbers using an algorithm based on place-value decomposition.

6.NS.B.2 Fluently divide multi-digit numbers using an algorithm based on place-value decomposition.

The article, “Standard Algorithms in the Common Core State Standards” by Karen Fuson and Sybilla Beckmann, published in the National Council of Supervisors of Mathematics journal last fall, was recommended to me this weekend.

It’s a weighty one, and relevant to conversations we have had on blogs and on Twitter in recent months, so I didn’t want to read it alone. I asked who was in for a reading group and got quite a few responses.

The article is available through Beckmann’s website (scroll way down to the “Some Other Papers” heading).

I have no experience organizing this sort of thing, but it seems that a hashtag is appropriate. I have investigated the matter and #algorithmchat is both clear on Twitter and communicates at least part of our purpose.

I considered trying to organize synchronous discussion, but it seemed too controlling and impossible to establish. So I vote we discuss by hashtag on Twitter. Anyone who ends up being moved to go long form can include include the #algorithmchat hashtag in a tweet to their post.

I have not read the article yet. It was passed along to me  by a colleague with whom I was  leading a professional development session. She really appreciated the comprehensive nature of the piece (again—it’s a long one).

I have respect for the work of both authors. Fuson’s clear research-based descriptions of what children have to do in order to understand “number” has been very helpful in the work I do with elementary teachers, and I used Beckmann’s Math for Elementary Teachers book for a few years in my courses, where I found it to be the best of the available formal textbooks for these courses. I no longer use a textbook for these courses, but if I needed to, I’d go back to hers for sure. I met Beckmann at a conference a few years ago and I found her thoughtful and open to conversations about learning (not always the case in mathematicians writing textbooks, I have found).

It will probably be midweek before I can carve out time to read the piece and weigh in. In the meantime, I encourage you all to dig in as you are able, say ‘hi’ on Twitter and pass along your longer tidbits in the form of blog posts, and (if you are so inclined) interpretive dance.

Oh, and invite your friends, relatives and enemies to the party. This will be fun.