Just a quick note here for the folks who are (a) not on Twitter and (b) not following Talking Math with Your Kids.

I created a shapes book for all ages. The digital version is free for now. Details are in this post over at TMWYK.

The mathematics I encounter in classrooms

Just a quick note here for the folks who are (a) not on Twitter and (b) not following Talking Math with Your Kids.

I created a shapes book for all ages. The digital version is free for now. Details are in this post over at TMWYK.

You should seriously go check out Polygraph. Four versions of a delightful and challenging game:

- Lines
- Parabolas
- Rational functions
- Hexagons

The hexagons will be familiar to long-time readers of this blog.

I have run the parabolas version in College Algebra, and the hexagons version in my Ed Tech course. It was a huge hit both times—lots of conversation happened both electronically and out loud in the classroom. It’s a ton of fun.

I am especially pleased with the rational functions version. It makes for challenging work—even among the mathematically astute Team Desmos in recent trial runs.

Read the Desmos blog post on the matter if you like.

I found a page full of computations sitting around the house this evening. Naturally, I picked it up and gave it a look.

Griffin (10 years old, 5th grade) had been doing some multiplication in class today. Somehow his scratch paper ended up on our couch.

Here is one thing I saw.

Naturally I wanted to ask the boy about it. He consented.

Me:I see you were multiplying 37 by 22 here.

Griffin(10 years old): Yeah. But I got it wrong so I did it again with the lattice.

Me:How did you know you got it wrong?

G: I put it in the answer box and it was wrong.

It turns out they were doing some online exercises. There is an electronic scratchpad, which he found awkward to use with a mouse (duh), plus his teacher wanted to be able to see their work, so was encouraging paper and pencil work anyway.

I was really hoping he would say that 37 times 22 *has* to be a lot bigger than 202. Alas he did not.

Anyway, back to the conversation.

Me:OK. Now 37 times 2 isn’t 101. But let’s imagine that’s right for now. We’ll come back to that.

G: Wait. That’s supposed to be 37 times 2? I though you just multiplied that by that, and that by that.

He indicated 7 times 2, and then 3 times the same 2 as he spoke.

Me:Yes. But when you do that, you’ll get the same thing as 37 times 2.

A brief moment of silence hung between us.

Me:Whatis37 times 2?

G: Well….74.

Let us pause to reflect here.

This boy can think about numbers. He got 37 times 2 faster in his head than I would have with pencil and paper. But when he uses the standard algorithm that all goes out the window in favor of the steps.

THE STEPS WIN, PEOPLE!

The steps trump thinking. The steps trump number sense.

The steps triumph over all.

Back to the conversation.

Me:Yes. 74. Good. I like that you thought that out. Let’s go back to imagining that 101 is right for a moment. Then the next thing you did was multiply 37 by this 2, right?

I gestured to the 2 in the tens place.

G: Yes.

Me:But that’s not really a 2.

G: Oh. Yeah.

Me:That’s a 20. Twotens.

G: Yeah.

Me:So it would be 101 tens.

G: Yeah.

I know this reads like I was dragging him through the line of reasoning, but I assure you that this is ground he knows well. I leading him along a well known path that he didn’t realize he was on, not dragging him trailing behind me through new territory. We had other things to discuss. Bedtime was approaching. We needed to move on.

Me:Now. We both know that 37 times 2 isn’t 101. Let’s look at how that goes. You multiplied 7 by 2, right?

G: Yup. That’s 14.

Me:So you write the 4 and carry the 1.

G: That’s what I did.

Me:mmmm?

G: Oh. I wrote the one

Me:and carried the 4. Yeah. If you had done it the other way around, you’d have the 4 there [indicating the units place], and then 3 times 2 plus 1.

G: Seven.

Me:Yeah. So there’s your 74.

This place value error was consistent in his work on this page.

Let me be clear: this error will be easy to fix. I have no fears that my boy will be unable to multiply in his adolescence or adult life. Indeed, once he knew that he had wrong answers (because the computer told him so), he went back to his favorite algorithm—the lattice—and got correct answers.

I am not worried about this boy. He is and he will be fine.

But I want to point out…I *need* to point out that this is exactly the outcome you should expect when you go about teaching standard algorithms.

If you wonder why your kids (whether your offspring, your students, or both) are not *thinking *about the math they are doing, it is because the algorithms we (you) teach them are designed so that people do not have to think. That is why they are efficient.

If you want kids who get right answers without thinking, then go ahead and keep focusing on those steps. Griffin gets right answer with the lattice algorithm, and I have every confidence that I can train him to get right answers with the standard algorithm too.

But we should not kid ourselves that we are teaching mathematical thinking along the way. Griffin turned off part of his brain (the part that gets 37 times 2 quickly) in order to follow a set of steps that didn’t make sense to him.

And we shouldn’t kid ourselves that this is only an issue in the elementary grades when kids are learning arithmetic.

**Algebra**. The quadratic formula is an algorithm. Every algebra student memorizes it. How it relates to inverses, though? Totally obfuscated. See, we don’t have kids *find *inverses of quadratics because those inverses are not functions; they are relations. If we *did *have kids find inverses of quadratics, they could think about the relationship between the quadratic formula:

and the formula for the inverse relation of the general form of a quadratic:

**Calculus**. So many formulas (algorithms) that force students not to think about the underlying relationships. If we wanted students to really think about rates of change (which are what Calculus is really about), we might have them develop a theory of secant lines and finite differences before we do limits and tangent lines. We might have Calculus students do tasks such as Sweet Tooth from Mathalicious (free throughout October!). There, students think about *marginal enjoyment *and *total enjoyment*.

**On and on**.

This is pervasive in mathematics teaching.

The results are mistaken for the content.

So we teach kids to get results. And we inadvertently teach them not to use what they know about the content—not to look for new things to know. Not to question or wonder or connect.

I’m telling you, though, that it doesn’t have to be this way.

Consider the case of *Talking Math with Your Kids*. There we have reports from around the country of parents and children talking about the ideas of mathematics, not the procedures.

Consider the case of Kristin (@MathMinds on Twitter), a fifth grade teacher, and her student “Billy”. Billy made an unusual claim about even and odd numbers. She followed up, she shared, we discussed on Twitter. Pretty soon, teachers around the country were engaged in thinking about whether Billy would call 3.0 *even* or *odd*.

But standard algorithms don’t teach any of that. They teach children to get answers. They teach children not to think.

I have read about it. I have thought about it. And tonight I saw it in my very own home.

My fellow Minnesotans, we no longer have a formal Fall Conference in mathematics education.

You can either shed a tear or do something about it. (or both)

If you choose the latter, join me and a whole bunch of others at EdCamp Math and Science MN.

It is free. It takes place Friday, October 17 (during MEA weekend).

See you there.

Posted in Uncategorized

My *5 Reasons Not to Share* post has gained new life in the last week. It is evidently being shared widely on Facebook.

One consequence of this is that I am getting daily emails from people who read the piece and feel moved to comment. I do believe the Internet ought to facilitate dialogue. So I have been replying to these emails.

Sometimes, people leave a wrong email address in the contact form and they bounce back. So, in a show of good faith, I share with you a recent email and my reply. Perhaps Gavin will come back to the blog and read my reply. Perhaps he will not.

Anyway, here goes.

**Gavin** writes:

I do not know if you failed to do your research, but the number line is clearly part of Common Core, for instance:

“CCSS.Math.Content.6.NS.C.6

Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.”I am not sure how to comment on the article because you have banned commenting on them. I do not have a twitter and therefore cannot join the disucssion there. I hope that you’re not intentionally trying to cast a positive light on Common Core but are instead trying to give an unbiased account of it.

**I** reply:

Thank you for taking the time to read, and to write.

I just want to clarify that my claim was not that number lines do not appear in the Common Core. They do appear there, as you point out with your citation. You are completely correct.

But if I remember correctly, the worksheet in question was a second grade worksheet. My claim was this: “There is nothing in the Common Core State Standards that requires students to use number lines to perform multi-digit subtraction.”

I stand by that claim. Even the number line standard you cite in sixth grade doesn’t reference the number line as a way to understand multi-digit subtraction. Instead the spirit of that standard is to use the number line as a way to represent negative numbers (such as -9 or -1/2), and then to understand the coordinate plane. Simply put, if students are going to graph functions in algebra, they will need to work with number lines in earlier grades.

As for the comments thing…I was saddened to have to turn them off for that 5 reasons post. But I am committed to maintaining a reasoned and productive tone on this blog. The comments (both pro- and con- on the Common Core) were spiraling out of control and I simply did not have the time to manage them. It seems clear to me that people are able to comment on the piece as it gets shared on Facebook, but I don’t have access to the comments on other people’s shares so I cannot speak to their quality, and I am not responsible for them in the way I am when they are on my blog.

Finally, you can search my blog for “Common Core” and find that I have made some rather pointed critiques of some specific standards in the Common Core—including engaging and arguing with Bill McCallum (a Common Core author) on matters involving rates, ratios and unit rates. All on the record, and you would be welcome to join the conversation in comments on those posts. I have no interest in promoting CCSS. I do have an interest in making sure that critiques are honest and fair.

Best wishes and thanks again for writing.

Christopher

Back in the spring when the Letter to Jack was a hot item, I took to Twitter to wonder why there was no *Common Core Math for Dummies.* One thing led to another, I proposed it to Wiley and now you can expect it in the spring.

Audience is parents, and this may appear in the title (*Common Core Math for Parents For Dummies* is the working title). It goes for the big picture in each of the grade levels, K—8.

The *For Dummies *format is pretty rigid but there will be no mistaking authorship. A few sample section headings (and the grades where they will appear) to whet your appetite:

1st grade.Saying bye-bye to key words

1st grade.Understanding the importance of ten

2nd grade.Why units matter

2nd grade.Place value

2nd grade.More about place value

2nd grade.Seriously. Place value.

4th grade.Multiplication: Whatisit and why not just memorize the facts?

5th grade.Standard algorithms: Doing things “the old-fashioned way”?

6th grade.Dividing fractions—More fun than you’d think!

6th grade.Area: It all goes back to rectangles

8th grade.Congruence and similarity: Two kinds of sameness

Catch you all later. I have some writing to do!

I’ll keep you posted.

Posted in News

The constraints are these: Five minutes, 20 slides. They advance every 15 seconds whether you are ready or not.

Here is my first stab at the genre, from this spring’s NCTM/NCSM conference in New Orleans. The others who presented that day are all worth watching. You can get the complete list, links and a bit more context from The Math Forum, which hosted the talks.

Enjoy.